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Abstract

Direct computation of the mixed-mode dynamic asymptotic stress field around a notch tip is difficult because the

mode I and mode II stresses are in general governed by different orders of singularity. In this paper, we propose a pair

of elastodynamic contour integrals JkRðtÞ. The integrals are shown to be path-independent in a modified sense and so

they can be accurately evaluated with finite element solutions. Also, by defining a pair of generalized stress intensity

factors (SIFs) KI;bðtÞ and KII;bðtÞ, the relationship between JkRðtÞ and the SIF�s is derived and expressed as functions of

the notch angle b. Once the JkRðtÞ-integrals are accurately computed, the generalized SIF�s and, consequently, the

asymptotic mixed-mode stress field can then be properly determined. No particular singular elements are required in the

calculation. The proposed numerical scheme can be used to investigate the dynamic amplifying effect in the near-tip

stress field.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The modes I and II fracture states associated with a notch tip are in general governed by different orders

of singularity, with the strength of singularity for mode II weaker than that of mode I. While numerous

analytical studies on description of the quasi-static asymptotic singular stress behavior in the near-tip re-
gion have been performed (e.g. Williams, 1952; Bogy, 1972; Awaji et al., 1986; Peng, 1986, etc.), direct

evaluation of the stress field with numerical schemes such as finite element method appears to be difficult

due to the complicated mechanical state around the singular point.

For the special case when the singular point corresponds to a crack tip for linear elasticity, the mixed-

mode near-tip characterizing parameters such as the stress intensity factors (SIF�s) can be determined by

combined use of the Jk-integrals (k ¼ 1, 2) (Knowles and Sternberg, 1972; Budiansky and Rice, 1973). By
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definition, Jk are line integrals evaluated along a counterclockwise contour enclosing and shrinking onto the

crack tip. For homogeneous media with traction-free crack surfaces, the first component J1, also generally

known as J , is path-independent. As regards J2, the other component of Jk, the property of path-inde-

pendence needs to be revised (Herrmann and Herrmann, 1981) and so the region near and at the crack tip is
always involved in the calculation. Therefore, direct evaluation of J2 from numerical solutions is difficult

mainly owing to the singular mechanical behavior. To overcome this, approximate expressions for J2, in
conjunction with finite element solutions, were proposed for elastostatic (Eischen, 1987) and elastodynamic

(Chang and Chen, 1998) conditions respectively. With these numerical schemes, J2 can be accurately cal-

culated without using any particular singular finite elements.

For a notch tip, however, the order of the stress singularity is generally different from that of the crack

case (i.e., r�1=2 ). As described, the symmetric (mode I) and antisymmetric (mode II) parts of the quasi-static

near-tip asymptotic stress field are governed by different singular terms, with the orders of singularity
depend upon the notch angle (Peng, 1986). In such a case, the conventional concept of SIF�s and the Jk-
integrals for crack problems is no longer valid. As a matter of fact, it was observed that the results of the

Jk-integrals associated with a notch tip generally vanish. Therefore, instead of direct application of the Jk-
integrals, a pair of alternative contour integrals termed JkR for quasi-static problems were presented by the

authors (Chang and Kang, 2002). By appropriately evaluating the JkR-integrals, the asymptotic near-tip

mixed-mode stress field can thus be consequently determined.

In this paper, a numerical procedure, incorporated with the finite element method, is developed for

calculation of the elastodynamic asymptotic mixed-mode stress field for plane elastic problems containing a
stationary notch tip. Since the Jk-integrals are not feasible for use in such problems, the formulation is

based on the concept of the alternative elastodynamic parameters JkR. With the numerical scheme, the

generalized dynamic SIF�s associated with the notch tip can be calculated. This is an extension of the

aforementioned earlier work conducted by the authors on the corresponding quasi-static problems. No

particular singular elements are used in the calculations.

2. The elastodynamic asymptotic stress field

Consider a homogeneous elastic body in a 2-D field, containing a stationary notch of arbitrary angle b
(Fig. 1). The body is subjected to a system of dynamic loads and reaches its current deformed state at a

specific time t. A local coordinate system originating at the notch tip O is introduced, with the notch angle

being bisected by the (negative) x1-axis. The stress field in the vicinity of a notch tip for the quasi-static case

has been studied in the authors� previous work (Chang and Kang, 2002). Here, by taking the Airy stress

function employed by Williams (1952) and considering the condition when the notch edges are traction-

free, the elastodynamic asymptotic stress field in the immediate neighborhood of the notch tip can be
expressed in terms of the following separable forms as functions of the notch angle

rrðr; h; b; tÞ ¼ rk1 KI;bðtÞ
ð2p � bÞ1=2

½f1ðbÞ cos k1h þ g1ðbÞ cosðk1 þ 2Þh�

þ rk2 KII;bðtÞ
ð2p � bÞ1=2

½h1ðbÞ sin k2h þ p1ðbÞ sinðk2 þ 2Þh� ð1Þ

rhðr; h; b; tÞ ¼ rk1 KI;bðtÞ
ð2p � bÞ1=2

½f2ðbÞ cos k1h þ g2ðbÞ cosðk1 þ 2Þh�

þ rk2 KII;bðtÞ
ð2p � bÞ1=2

½h2ðbÞ sin k2h þ p2ðbÞ sinðk2 þ 2Þh� ð2Þ
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srhðr; h; b; tÞ ¼ rk1 KI;bðtÞ
ð2p � bÞ1=2

½f3ðbÞ sin k1h þ g3ðbÞ sinðk1 þ 2Þh�

þ rk2 KII;bðtÞ
ð2p � bÞ1=2

½h3ðbÞ cos k2h þ p3ðbÞ cosðk2 þ 2Þh� ð3Þ

where ðr; hÞ denote the polar components of the local coordinate and �ðp � b=2Þ6 h6 ðp � b=2Þ. The
orders of singularity, k1 and k2, are the smallest nontrivial real eigenvalues of the following pair of eigen

equations

sin½ðk þ 1Þð2p � bÞ� � ðk þ 1Þ sin b ¼ 0 ð4Þ

The values of k1 and k2 are presented in Fig. 2 as functions of b, with k2 P k1 P � 0:5. Also, the dimen-

sionless coefficients fi, hi, gi, and pi (i ¼ 1, 2, 3) are explicit functions of b and sketched in Fig. 3(a) and (b).

Fig. 2. The values of k1 and k2, as functions of the notch angle b.

Fig. 1. An elastic body in a 2-D field, containing a stationary notch of angle b.
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The values of h1 and h2 become relatively large and change signs at b 	 0:57p. In spite of such discontinuity
of h1 and h2, the stress components rr and rh still appear as continuous functions of b since the function

sin k2h vanishes and changes signs at this specific value of b. Note that the orders of singularity and the

corresponding angular functions are identical to those of the quasi-static case.

In the near-tip stress field, the generalized elastodynamic stress intensity factors for an arbitrary notch

angle b at time t, denoted KI;bðtÞ and KII;bðtÞ, can be defined as

KI;bðtÞ 
 lim
r!0

ð2p � bÞ1=2r�k1rhðr; 0; b; tÞ ð5Þ

KII;bðtÞ 
 lim
r!0

ð2p � bÞ1=2r�k2srhðr; 0; b; tÞ ð6Þ

These elastodynamic SIF�s account for the strength of stress singularity in the near-tip region. They are

undetermined constants, dependent upon the far-field loading and geometric conditions.

It is shown in Eqs. (1)–(3) that the mode I (symmetric) and mode II (antisymmetric) near-tip stress

components are in general governed by different orders of singularity, except for the special case when

b ¼ 0 (i.e., the crack problem, with k1 ¼ k2 ¼ �0:5). It is observed that the strength of singularity for mode

II stresses is essentially weaker than those of mode I. Furthermore, for notch angles greater than 0.57p
(approximately), the problem considered has bounded mode II stresses in the near-tip region. Such singular

behavior is well consistent with that described by Peng (1986).

3. The elastodynamic JkR-integrals for a notch tip

As an analog to the conventional elastodynamic Jk-integrals for crack problems (Nishioka and Atluri,

1983), the corresponding contour integrals for a notch tip can be defined as

JkðtÞ ¼ lim
C!0

Z
C

ðW
�

þ T Þnk � rijnj
oui
oxk

� ��
ds k ¼ 1; 2 ð7Þ

where W is the strain energy density of the material, T is the kinetic energy density, rij and ui are the

Cartesian components of the stress tensor and the displacement vector, nj are the Cartesian components of

outward unit vector normal to C (as shown in Fig. 1), and s is the arc length along the contour. The path of

integration, C, is defined as a counterclockwise contour encircling and shrinking onto the tip of the notch O
(this limiting case is not shown in Fig. 1).

For the special case when b ¼ 0, the integration in Eq. (7) results in a pair of finite-valued solutions for
J1ðtÞ and J2ðtÞ. Physically, they can be identified as the elastodynamic energy release rates for a stationary

Fig. 3. (a) The variations of fi, h3, gi, and pi (i ¼ 1, 2, 3) with respect to b. (b) The variations of h1 and h2 with respect to b.
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crack as the crack advances along and perpendicular to its original orientation respectively. As well

demonstrated for both static (e.g. Hellen and Blackburn, 1975) and dynamic (Nishioka and Atluri, 1983)

cases, Jk can be related to the SIF�s as

J1ðtÞ ¼
K
E

K2
I;0ðtÞ

h
þ K2

II;0ðtÞ
i

ð8Þ

J2ðtÞ ¼ � 2K
E

KI;0ðtÞKII;0ðtÞ ð9Þ

where K ¼ 1 (for plane stress) or 1� m2 (for plane strain), E is the Young�s modulus, and m is the Poisson�s
ratio. The above equations show that, not only can the integrals be employed explicitly as the energy

fracture parameters for plane crack problems, they can also be used to evaluate the SIF�s KI;0ðtÞ and KII;0ðtÞ
at the crack tip. However, for notch problems with generally b > 0, the characteristic of finite values and
the physical meanings of Jk are no longer valid. Also, the relationship between JkðtÞ and the generalized

SIF�s is still not obvious.
To investigate the behavior of JkðtÞ for a notch tip, we consider a properly chosen circular contour with

center at the tip O and of arbitrarily small radius, say, r, as shown in Fig. 1. Although not explicitly shown

here, it is implied by Eqs. (1)–(3) that the velocity field in the near-tip region is governed by the two

dominant terms rk1þ1 (mode I) and rk2þ1 (mode II). This indicates that the corresponding kinetic energy

density T is non-singular since it is at least of the order of Oðr2k1þ2Þ, with k1 P � 0:5. Therefore, the
contribution from T in Eq. (7) is relatively negligible as C shrinks onto the notch tip O, i.e.,

JkðtÞ ! lim
C!0

Z
C

Wnk

�
� rijnjð

oui
oxk

Þ
�
ds k ¼ 1; 2 ð10Þ

Substituting Eqs. (1)–(3), together with the asymptotic displacement field, into Eq. (10) and taking inte-

gration along this path counterclockwisely, we then have

J1ðtÞ ¼ lim
r!0

K
E

r2k1þ1aðbÞK2
I;bðtÞ

h
þ r2k2þ1bðbÞK2

II;bðtÞ
i

ð11Þ

J2ðtÞ ¼ lim
r!0

� 2K
E

rk1þk2þ1cðbÞKI;bðtÞKII;bðtÞ ð12Þ

where aðbÞ, bðbÞ, and cðbÞ are dimensionless functions of b and their variations with respect to b are shown

in Fig. 4. It is observed that, in addition to KI;bðtÞ and KII;bðtÞ, three extra terms (i.e., r2k1þ1, r2k2þ1, and

Fig. 4. The variations of a, b, and c with respect to b.
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rk1þk2þ1) are contained in Eqs. (11) and (12). With the presence of the three terms, we anticipate that the

values of JkðtÞ vanish as the limiting condition r ! 0 by definition. Note that, when b ¼ 0, the three terms

become unity and the solutions of JkðtÞ reduce to Eqs. (8) and (9).

Although the physical meanings of JkðtÞ are generally not well interpreted due to their vanishing feature,
they can still be used in determination of the asymptotic stress field. To this end, by choosing a small but

finite radius R for the circular integration path C and denoting the �JkRðtÞ-integrals� as alternatives for JkðtÞ,
we then rewrite Eqs. (11) and (12) as

J1RðtÞ ¼
K
E

R2k1þ1aðbÞK2
I;bðtÞ

h
þ R2k2þ1bðbÞK2

II;bðtÞ
i

ð13Þ

J2RðtÞ ¼ � 2K
E

Rk1þk2þ1cðbÞKI;bðtÞKII;bðtÞ ð14Þ

With the cutoff radius R, JkRðtÞ turn out to be of finite values. The SIF�s and, consequently, the corres-

ponding stress field can then be determined should the integrals be properly evaluated. However, in order to
have appropriate solutions for KI;bðtÞ and KII;bðtÞ, it is required that R be taken in the region dominated by

the asymptotic field. Singular behavior is thus always involved in the calculation. In finite element calcu-

lations, the discretized solutions will in general describe the behavior around the notch tip O more or less

accurately, depending on the degree of local grid refinement and/or the adoption of special singular ele-

ments. Therefore, direct calculation of JkRðtÞ along C with numerical solutions appears to be difficult.

In addition to the proposed JkRðtÞ-integrals, the SIF�s for a notch tip can be calculated by using other

types of contour integrals. For example, the H -integral was derived with the concept of Betti�s reciprocal
theorem and presented to compute either single- or mixed-mode SIF�s in notched solids under quasi-static
loads for specific notch angles (e.g. Carpenter, 1984; Sinclair et al., 1984; Babuska and Miller, 1984;

Labossiere and Dunn, 1998, etc.). The integration is performed by using a set of particular complementary

solutions satisfying the same field equations as the displacement and stress fields. By comparing with the

H -integral, JkR appears to be more straightforward in calculation since no extra complementary solutions

are required. With this superiority, JkR can then be directly evaluated in the postprocessor of the finite

element code once the nodal displacements under deformation are solved.

4. Modified concept of path-independence

As described, the integration path C for JkRðtÞ is defined as a counterclockwise circular contour with

center at the notch tip O and of small radius R. We assume the conditions when the notch edges are

traction-free and body forces are neglected. By applying divergence theorem under the state of dynamic

equilibrium, we can have the JkR-integrals rewritten as

JkRðtÞ ¼
Z

Co

Wnk

�
� rijnj

oui
oxk

� ��
dsþ

Z
C1þC2

Wnk dsþ
Z
A

q
o2ui
ot2

oui
oxk

da ð15Þ

where q is the mass density; Co is an arbitrary outer counterclockwise contour; C1 and C2 are the portions of

line segments along the notch edges, which are enclosed by Co and terminated at a distance R away from the

tip O; A is the simply-connected domain bounded by Co and the circular contour of radius R (which is

shown as the shaded area in Fig. 1).

For the quasi-static case, the last term of Eq. (15) (i.e., the integral over domain A) vanishes. Further-
more, by considering the first component (i.e., k ¼ 1) under the special condition when b equals 0, we note

that the second term on the right hand side of Eq. (15) also vanishes. The integration then reduces to the
conventional J1-integral for crack problems. In such case, the value of integration remains unchanged along
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any arbitrarily chosen outer contour Co and this property is the well-known path-independence. With this

property, Co is usually taken to be far from the crack tip so that the singular behavior in the near-tip region

can be neglected in the calculation. However, for the general condition when b > 0 and subjected to dy-

namic loads, extra integrals along the notch edges C1 þ C2 and over the domain Amust be included for both
J1RðtÞ and J2RðtÞ. The idea of path-independence hence needs to be modified by including these additional

line and domain integrals.

Although the remote path Co can be chosen arbitrarily, the extra line segments C1 þ C2 should both be

terminated in the near-tip region. Also, the domain A includes the near-tip region as R is chosen small

enough to be inside the zone of the dominance of the asymptotic solution. With these portions of line and

domain integrals, the asymptotic singular behavior is thus inevitably involved in the calculation. Cautious

investigation for the numerical results is therefore necessary.

5. Numerical examples

In the following two subsections, two numerical example problems are presented. In the first problem,

the JkRðtÞ-integrals are evaluated and the associated features of the numerical results are investigated. In the

second example problem, the generalized SIF�s and the corresponding stress field are evaluated. Quadratic

elements are used for displacement interpolation in the calculation. The transient analysis, neglecting

damping effect, is performed by an unconditionally stable Newmark time integration scheme. No particular
singular element is used throughout the study.

5.1. Problem 1––the JkRðtÞ-integrals

The aim of this problem is to illustrate the proposed computation procedure and to evaluate the char-

acteristics of the JkR-integrals. Fig. 5(a) shows a plane strain elastic specimen containing a central wedge-

shaped defect and subjected to dynamic combined loads ðrðtÞ; sðtÞÞ. The combined loads ðrouðtÞ; souðtÞÞ
are given proportionally as step function of time uðtÞ (Fig. 5(b)).

The numerical study for this test problem is organized as follows. First, the effect of the local finite ele-

ment approximation in the near-tip region is investigated. Second, calculations under a number of paths,

each encircling different portions of the same finite element mesh, are carried out in order for examination
of the property of generalized path-independence. Finally, the behavior of JkRðtÞ with respect to different

selections of R is examined. Four instances of different notch angles (with b equal to 0, p=4, p=2, and 3p=4
respectively) are considered in the following calculations. Note that the feasibility of our formulation for

quasi-static problems has been demonstrated in the authors� previous work (Chang and Kang, 2002).

The finite element representation shown in Fig. 6 is used to analyze the specimen (e.g., of b ¼ p=2). In the

discretized model, the elements are progressively refined as they approach the notch tip. In order to in-

vestigate the effect of the local finite element approximations, several meshes are constructed by successive

local h-refinements in the near-tip region, with the size of the tip-element ranging from �l=25� to �l=250�.
Although not listed in detail here, the results obtained from the above different meshes show very good

convergence.

Three integration paths, each enclosing different region of the above finite element mesh, are defined in

the calculation to demonstrate the property of modified path-independence. The associated exterior con-

tours Co�s of these paths are depicted in Fig. 7(a)–(c). As illustrated in Eq. (15), the calculation consists of

three parts, including the integrations along Co, the portion of the notch edges C1 þ C2, and the domain A.
The results of each part for R ¼ 4:22� 10�2l m and ðro; soÞ ¼ ð15;�20Þ kPa, at t ¼ 0:75 s are shown in

Table 1. It is observed that the integrations from C1 þ C2 and A make significant contributions to the
computation and thus account for the �modified� property of path-independence. However, since the
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integrand in the last term of Eq. (15) is relatively non-singular, it is thus noted that the integration over A
becomes less significant as Co being chosen closer to the tip (e.g. path (c)). As a result, the solution from

different paths in general yields very similar results of JkR. Although the formulation is verified to be ana-

lytically path-independent in the modified sense, slight deviations among the results are observed because

the dynamic equilibrium state is satisfied only weakly in the finite element computation.

Next, the behavior of JkR with respect to various values of R is examined. Note that, in order to be able to

use the proposed solution scheme, it is necessary that the values of R in the finite element calculation be

Fig. 6. The finite element model for the specimen in Fig. 5(a).

Fig. 5. (a) A homogeneous elastic body containing a wedged-shape defect. (b) Time function of the applied load.
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taken small enough to be inside the zone of dominance of the asymptotic solution. By arbitrarily choosing
the solution with respect to Ro ¼ 0:2� 10�2l m as the reference, the normalized results of JkR=JkRo

for

ðro; soÞ ¼ ð15;�20Þ kPa, at t ¼ 0:75 s are depicted as functions of the scaled cutoff radius R=2l and shown

in Fig. 8(a) and (b). The asymptotic slope of each curve extracted from the numerical fields, along with the

analytical solutions for the order of the leading terms of J1R and J2R (as addressed in Eqs. (13) and (14)), are

listed in Table 2. We observe that the computed results for the slope of lnðJ2RÞ appear to be well consistent

with the values of k1 þ k2 þ 1, with the errors to remain under 2%. On the other hand, substantial devi-

ations between either 2k1 þ 1 or 2k2 þ 1 and the results of lnðJ1RÞ are observed for b ¼ p=4 and p=2 because

the asymptotic solution of J1R is governed by the appearance of both r2k1þ1 and r2k2þ1 under the mixed-mode

Table 1

Path-independence for Problem 1 (Unit: 103 Pam) (mixed-mode)R
Co

R
C1þC2

R
A J1R

R
Co

R
C1þC2

R
A J2R

Path

b ¼ 0 (a) 5.498 0 )0.654 4.844 )0.567 1.622 0.482 1.537

(b) 7.802 0 )3.028 4.774 )2.698 1.622 2.605 1.529

(c) 4.882 0 )0.040 4.842 1.433 0.107 0.002 1.542

b ¼ p=4 (a) 9.751 )4.215 )1.616 3.920 1.729 0.554 0.467 2.750

(b) 14.06 )4.215 )5.962 3.883 )1.301 0.554 3.550 2.803

(c) 5.322 )1.197 )0.220 3.905 2.907 )0.178 0.003 2.732

b ¼ p=2 (a) 7.100 )4.467 )1.120 1.513 1.265 )1.358 0.968 0.875

(b) 9.674 )4.467 )3.718 1.489 )9.873 )1.358 12.09 0.859

(c) 2.304 )0.669 )0.149 1.486 1.070 )0.428 0.230 0.872

b ¼ 3p=4 (a) 3.926 )3.382 0.054 0.598 0.395 )1.220 0.979 0.154

(b) 5.105 )3.382 )1.136 0.587 )1.052 )1.220 2.423 0.151

(c) 0.948 )0.531 0.172 0.589 0.353 )0.199 0.005 0.159

J1R ¼
R

Co
þ
R
C1þC2

þ
R
A; J2R ¼

R
Co
þ
R
C1þC2

þ
R
A.

Note: w ¼ 30 m, l ¼ 1:5 m, R=l ¼ 4:22� 10�2, E ¼ 2:97 MPa, m ¼ 0:3, q ¼ 1384 kg/m3, ðro; soÞ ¼ ð15;�20Þ kPa, t ¼ 0:75 s (paths (a)–

(c) are shown in Fig. 7(a)–(c) respectively).

Fig. 7. Three integration paths for the JkR-integrals.
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loads. Nevertheless, the influence of r2k2þ1 becomes less significant when b increases so that the slope of
lnðJ1RÞ appears to be more close to the value of 2k1 þ 1, as is evident in the case of b ¼ 3p=4, where the

near-tip mechanical behavior is dominated by the mode I stresses.

The singular behavior of the dynamic JkR appears to be similar to that in the quasi-static condition. For

more discussions on the trend of the singularity with respect to the notch angle b, please refer to the au-

thors� previous work (Chang and Kang, 2002).

Since the concept of the elastodynamic JkRðtÞ-integrals for notches is originally presented in this paper,

there is no analytical or numerical solution with which direct test of the above computation scheme can be

carried out (except for the case b ¼ 0). Nevertheless, the numerical results show that the integrals are path-
independent (in a modified sense). Also, the computed values of the order of their leading terms in the

asymptotic near-tip region are well consistent with those of the analytical solutions. The feasibility of the

proposed integrals can thus be appropriately demonstrated by the observation and comparison.

5.2. Problem 2––the generalized SIF’s

As demonstrated in the previous problem, the values of JkRðtÞ for a notch tip can be properly calculated

from the finite element solutions. It is therefore possible to make use of the results of JkRðtÞ to determine the
generalized SIF�s KI;bðtÞ and KII;bðtÞ by using Eqs. (13) and (14). Consequently, the asymptotic stress field

can then be evaluated.

In this problem, we first demonstrate the feasibility of the formulation by examining the numerical results

of KI;bðtÞ and KII;bðtÞ computed from different selections of R. Again, we consider the plane strain specimen

subjected to the combined loads ðrouðtÞ; souðtÞÞ shown in Fig. 5. The generalized SIF�s, resulting from the

corresponding solutions of JkR, associated with various values of R for various notch angles at t ¼ 0:75 s are

listed in Table 3 Note that, for b ¼ 0, the SIF�s (i.e., KI;0 and KII;0) are evaluated directly from Jk and es-

sentially independent of R. The results, except those associated with KII;3p=4, appear to be almost invariant

Table 2

The asymptotic slopes of lnðJkRÞ for Problem 1 (mixed-mode)

lnðJ1RÞ lnðJ2RÞ 2k1 þ 1 2k2 þ 1 k1 þ k2 þ 1

b ¼ 0 0 0 0 0 0

b ¼ p=4 0.154 0.164 0.01 0.319 0.165

b ¼ p=2 0.176 0.450 0.089 0.817 0.453

b ¼ 3p=4 0.341 0.991 0.347 1.604 0.976

Note: w ¼ 30 m, l ¼ 1:5 m, E ¼ 2:97 MPa, m ¼ 0:3, q ¼ 1384 kg/m3, ðro; soÞ ¼ ð15;�20Þ kPa, t ¼ 0:75 s.

Fig. 8. The variations of JkR=JkRo
with respect to R=2l for ðro; soÞ ¼ ð15;�20Þ kPa, at t ¼ 0:75 s.
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with respect to different selections of R, with maximum deviation to be under 2%, as anticipated. The

exception observed for KII;3p=4 is due to its non-singular behavior. In fact, KII;3p=4 is trivial since it makes no
contribution to the asymptotic stresses. Also, for the four instances of b considered in this problem, it is

revealed that the value of the SIF�s (again, except KII;3p=4) increases as the notch angle increases. As an aside,

it is suggested from our numerical results that the scale of R be within the range of 0.1l in order for accurate

solutions of the SIF�s.
Still, to further investigate the feasibility of the computation scheme, we reconsider the same specimen

and impose the pure mode I and mode II loads separately (proportionally as step function of time uðtÞ).
The results of the generalized SIF�s for ðro; soÞ ¼ ð15; 0Þ kPa and ðro; soÞ ¼ ð0;�20Þ kPa are shown in

Tables 4 and 5 respectively. The numerical results appear to be well consistent with those evaluated from
the mixed-mode solutions shown in Table 3, as expected. Note that the solution of KII;3p=4 is not available

numerically when the specimen is subjected to pure mode II load due to the appearance of the regular

leading term r1:604. As aforementioned, since the asymptotic mode II stress component is relatively negli-

gible for notch angles greater than 0.57p, the feature of KII;bðtÞ is therefore insignificant in such cases.

The calculated transient dynamic SIF�s for b ¼ p=4 subjected to the step combined load

ðrðtÞ; sðtÞÞ ¼ ð15uðtÞ;�20uðtÞÞ kPa are shown in Fig. 9. The results are normalized with respect to the

quasi-static SIF�s (i.e., ðKI;p=4Þs and ðKII;p=4Þs) so that the dynamic amplifying effect can be observed. The

figure reveals that, while the maximum dynamic KI;p=4ðtÞ can be 2.4 times of ðKI;p=4Þs, the peak for KII;p=4ðtÞ
reaches up to 3.7 times of its static value in this case.

Table 4

The results of SIF�s versus b for Problem 2 (mode I)

b 0 p=4 p=2 3p=4

KI;b (104 Pam1=2) 3.253 5.187 6.020 7.229

KII;b (104 Pam1=2) 0 0 0 0

Note: w ¼ 30 m, l ¼ 1:5 m, E ¼ 2:97 MPa, m ¼ 0:3, q ¼ 1384 kg/m3, ðro; soÞ ¼ ð15; 0Þ kPa, t ¼ 0:75 s.

Table 5

The results of SIF�s versus b for Problem 2 (mode II)

b 0 p=4 p=2 3p=4

KI;b (104 Pam1=2) 0 0 0 0

KII;b (104 Pam1=2) )12.43 )17.34 )18.83 –

Note: w ¼ 30 m, l ¼ 1:5 m, E ¼ 2:97 MPa, m ¼ 0:3, q ¼ 1384 kg/m3, ðro; soÞ ¼ ð0;�20Þ kPa, t ¼ 0:75 s.

Table 3

The results of KI;b and KII;b versus R for Problem 2 (mixed-mode) (Unit:104 Pam1=2)

R=2l (10�2) 0.66 1.28 2.11 3.22

b ¼ 0 KI;0 3.174

KII;0 )12.17
b ¼ p=4 KI;p=4 5.235 5.242 5.248 5.242

KII;p=4 )16.99 )17.01 )17.33 )17.19
b ¼ p=2 KI;p=2 5.970 6.085 6.007 5.936

KII;p=2 )18.89 )18.39 )18.66 )18.70
b ¼ 3p=4 KI;3p=4 7.314 7.350 7.286 7.193

KII;3p=4 )10.23 )22.23 )34.81 )26.89

Note: w ¼ 30 m, l ¼ 1:5 m, E ¼ 2:97 MPa, m ¼ 0:3, q ¼ 1384 kg/m3, ðro; soÞ ¼ ð15;�20Þ kPa, t ¼ 0:75 s.
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By substituting the generalized SIF�s into Eqs. (1)–(3), the asymptotic stress field can then be appro-

priately calculated. The circumferential distribution of the stresses for different notch angles under the
combined load ðro; soÞ ¼ ð15;�20Þ kPa at, say, r ¼ 2:33� 10�2l, when t ¼ 0:75 s are evaluated and shown

in Fig. 10(a)–(c). The results show that the strength of stress concentration decreases essentially as the value

of b increases. Such behavior is consistent with that of the analytical solutions, where the order of sin-

gularity becomes weaker as b increases. It is also observed that the contribution from the mode II stress

components become less significant as b increases. As a matter of fact, for the case of b ¼ 3p=4, the stresses
are observed to be almost dominated by the mode I components, as anticipated.

Although there is no analytical or numerical solution for direct verification of the above calculation

(except for the case b ¼ 0), the validity of the formulation for the generalized SIF�s can be demonstrated by
addressing the following two points. First, the numerical results of KI;bðtÞ and KII;bðtÞ appear to be invariant

with respect to different selections of the cutoff radius R, as anticipated by Eqs. (13) and (14). Also, the

computed values of the mixed-mode SIF�s are well consistent with those evaluated from the pure mode I

and mode II loads, as expected.

Fig. 9. The calculated transient dynamic SIF�s for b ¼ p=4 (mixed-mode).

Fig. 10. (a)–(c) The asymptotic stress field under ðro; soÞ ¼ ð15;�20Þ kPa at r ¼ 2:33� 10�2l when t ¼ 0:75 s.
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6. Conclusions

A numerical procedure is provided for calculation of the elastodynamic asymptotic mixed-mode stress

field for plane elastic problems containing a stationary notch tip. To this end, we first define a pair of
contour integrals termed JkRðtÞ, along with a pair of the generalized dynamic SIF�s KI;bðtÞ and KII;bðtÞ. The
relationship between JkRðtÞ and the SIF�s is then analytically derived and expressed in Eqs. (13) and (14).

The values of the coefficients aðbÞ, bðbÞ, and cðbÞ appear to be functions of the notch angle b only. In

principle, once the JkRðtÞ-integrals are evaluated, the generalized SIF�s and, consequently, the dynamic

asymptotic near-tip mixed-mode stress field can then be completely determined.

In order to properly characterize the near-tip behavior, it is required that the cutoff radius R be taken

small enough so the integration contour for JkRðtÞ be inside the region dominated by the asymptotic field.

Therefore, direct calculation of the JkRðtÞ-integrals with finite element solutions appears to be difficult.
Nevertheless, the integrals are shown to be path-independent in a modified sense. The integration can thus

be alternatively carried out by including three parts, i.e., an arbitrarily chosen outer contour Co, the line

segments along the notch edges C1 þ C2, and the domain A. With this property, accurate solutions can be

achieved without using any particular singular elements. The feasibility of our formulation is then demon-

strated in the numerical examples via detailed investigations of the computed asymptotic behavior. Also, it

is verified numerically that the results of KI;bðtÞ and KII;bðtÞ are actually insensitive to different selections of

R. In summary, the proposed numerical scheme can be used to investigate the dynamic amplifying effect in

the near-tip stress field.
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