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Abstract

Direct computation of the mixed-mode dynamic asymptotic stress field around a notch tip is difficult because the
mode I and mode II stresses are in general governed by different orders of singularity. In this paper, we propose a pair
of elastodynamic contour integrals Jiz(¢). The integrals are shown to be path-independent in a modified sense and so
they can be accurately evaluated with finite element solutions. Also, by defining a pair of generalized stress intensity
factors (SIFs) Ki4(¢) and Ky 4(¢), the relationship between Jiz(7) and the SIF’s is derived and expressed as functions of
the notch angle f. Once the Jz(¢)-integrals are accurately computed, the generalized SIF’s and, consequently, the
asymptotic mixed-mode stress field can then be properly determined. No particular singular elements are required in the
calculation. The proposed numerical scheme can be used to investigate the dynamic amplifying effect in the near-tip
stress field.
© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Notch tip; Mixed-mode elastodynamic stresses; Generalized stress intensity factors; Elastodynamic Jiz-integrals; Modified
path-independence

1. Introduction

The modes I and II fracture states associated with a notch tip are in general governed by different orders
of singularity, with the strength of singularity for mode II weaker than that of mode I. While numerous
analytical studies on description of the quasi-static asymptotic singular stress behavior in the near-tip re-
gion have been performed (e.g. Williams, 1952; Bogy, 1972; Awaji et al., 1986; Peng, 1986, etc.), direct
evaluation of the stress field with numerical schemes such as finite element method appears to be difficult
due to the complicated mechanical state around the singular point.

For the special case when the singular point corresponds to a crack tip for linear elasticity, the mixed-
mode near-tip characterizing parameters such as the stress intensity factors (SIF’s) can be determined by
combined use of the Ji-integrals (k = 1, 2) (Knowles and Sternberg, 1972; Budiansky and Rice, 1973). By
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definition, Jj are line integrals evaluated along a counterclockwise contour enclosing and shrinking onto the
crack tip. For homogeneous media with traction-free crack surfaces, the first component J;, also generally
known as J, is path-independent. As regards J,, the other component of J;, the property of path-inde-
pendence needs to be revised (Herrmann and Herrmann, 1981) and so the region near and at the crack tip is
always involved in the calculation. Therefore, direct evaluation of J, from numerical solutions is difficult
mainly owing to the singular mechanical behavior. To overcome this, approximate expressions for .J,, in
conjunction with finite element solutions, were proposed for elastostatic (Eischen, 1987) and elastodynamic
(Chang and Chen, 1998) conditions respectively. With these numerical schemes, J, can be accurately cal-
culated without using any particular singular finite elements.

For a notch tip, however, the order of the stress singularity is generally different from that of the crack
case (i.e., 7 /). As described, the symmetric (mode I) and antisymmetric (mode II) parts of the quasi-static
near-tip asymptotic stress field are governed by different singular terms, with the orders of singularity
depend upon the notch angle (Peng, 1986). In such a case, the conventional concept of SIF’s and the J;-
integrals for crack problems is no longer valid. As a matter of fact, it was observed that the results of the
Jy-integrals associated with a notch tip generally vanish. Therefore, instead of direct application of the J;-
integrals, a pair of alternative contour integrals termed J;; for quasi-static problems were presented by the
authors (Chang and Kang, 2002). By appropriately evaluating the Jiz-integrals, the asymptotic near-tip
mixed-mode stress field can thus be consequently determined.

In this paper, a numerical procedure, incorporated with the finite element method, is developed for
calculation of the elastodynamic asymptotic mixed-mode stress field for plane elastic problems containing a
stationary notch tip. Since the Ji-integrals are not feasible for use in such problems, the formulation is
based on the concept of the alternative elastodynamic parameters Jiz. With the numerical scheme, the
generalized dynamic SIF’s associated with the notch tip can be calculated. This is an extension of the
aforementioned earlier work conducted by the authors on the corresponding quasi-static problems. No
particular singular elements are used in the calculations.

2. The elastodynamic asymptotic stress field

Consider a homogeneous elastic body in a 2-D field, containing a stationary notch of arbitrary angle f§
(Fig. 1). The body is subjected to a system of dynamic loads and reaches its current deformed state at a
specific time ¢. A local coordinate system originating at the notch tip O is introduced, with the notch angle
being bisected by the (negative) x;-axis. The stress field in the vicinity of a notch tip for the quasi-static case
has been studied in the authors’ previous work (Chang and Kang, 2002). Here, by taking the Airy stress
function employed by Williams (1952) and considering the condition when the notch edges are traction-
free, the elastodynamic asymptotic stress field in the immediate neighborhood of the notch tip can be
expressed in terms of the following separable forms as functions of the notch angle

o 5pi0) = T )08 40 81 (8) st +20)

m [h1(B) sin 420 + py (B) sin(4, + 2)0] W

ool 0; ;1) = (Zf_ﬁ(;;/ [12(B) cos 10 + ga(B) cos(is +2)0]
12 % [12(B) sin 4,0 + pa(B) sin(4, + 2)0] (2)
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notch edges [3

Fig. 1. An elastic body in a 2-D field, containing a stationary notch of angle f.

T0(r, 0; B5t) = ! M [f3(B) sin 4,0 + g3(pB) sin(4; + 2)0]

(2m— )"

+r % [h3(B) cos 420 + p3(B) cos(a + 2)0] 2

where (r,0) denote the polar components of the local coordinate and —(n — /2) <0< (n — /2). The
orders of singularity, A; and 1,, are the smallest nontrivial real eigenvalues of the following pair of eigen
equations

sin[(A4+1)(2z — )] £ (A+1)sin f =0 (4)

The values of 4, and 1, are presented in Fig. 2 as functions of 8, with 4, > 2; = — 0.5. Also, the dimen-
sionless coefficients f;, &;, g;, and p; (i = 1, 2, 3) are explicit functions of § and sketched in Fig. 3(a) and (b).
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Fig. 2. The values of 4, and 4,, as functions of the notch angle f.
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Fig. 3. (a) The variations of f;, &3, g;, and p; (i = 1, 2, 3) with respect to f. (b) The variations of 4; and 4, with respect to f.

The values of /; and &, become relatively large and change signs at f ~ 0.57x. In spite of such discontinuity
of h; and h,, the stress components ¢, and oy still appear as continuous functions of f since the function
sin 4,0 vanishes and changes signs at this specific value of . Note that the orders of singularity and the
corresponding angular functions are identical to those of the quasi-static case.

In the near-tip stress field, the generalized elastodynamic stress intensity factors for an arbitrary notch
angle f§ at time ¢, denoted Kj4(¢) and Ky 4(), can be defined as

Kip(t) = lim(2n — §)"r "oy (r, 0; 1) (5)

Ku (1) = lim(2m — B)'r 1,9(r, 0; 1) (6)

These elastodynamic SIF’s account for the strength of stress singularity in the near-tip region. They are
undetermined constants, dependent upon the far-field loading and geometric conditions.

It is shown in Egs. (1)-(3) that the mode I (symmetric) and mode II (antisymmetric) near-tip stress
components are in general governed by different orders of singularity, except for the special case when
B =0 (i.e., the crack problem, with ; = 4, = —0.5). It is observed that the strength of singularity for mode
IT stresses is essentially weaker than those of mode I. Furthermore, for notch angles greater than 0.57%
(approximately), the problem considered has bounded mode II stresses in the near-tip region. Such singular
behavior is well consistent with that described by Peng (1986).

3. The elastodynamic J;z-integrals for a notch tip

As an analog to the conventional elastodynamic Ji-integrals for crack problems (Nishioka and Atluri,
1983), the corresponding contour integrals for a notch tip can be defined as

Jk(t):lriir(l) ; [(W—&-T)nk—aijnj(g—;’{)}ds k=12 (7)
where W is the strain energy density of the material, 7' is the kinetic energy density, ¢;; and u; are the
Cartesian components of the stress tensor and the displacement vector, n; are the Cartesian components of
outward unit vector normal to I" (as shown in Fig. 1), and s is the arc length along the contour. The path of
integration, I, is defined as a counterclockwise contour encircling and shrinking onto the tip of the notch O
(this limiting case is not shown in Fig. 1).

For the special case when § = 0, the integration in Eq. (7) results in a pair of finite-valued solutions for
Ji(¢) and J,(¢). Physically, they can be identified as the elastodynamic energy release rates for a stationary
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crack as the crack advances along and perpendicular to its original orientation respectively. As well
demonstrated for both static (e.g. Hellen and Blackburn, 1975) and dynamic (Nishioka and Atluri, 1983)
cases, J; can be related to the SIF’s as

A

(1) = % [Kia(0) + K0 ®)

S (t) = 7 10(t)Kmo(?) )
where A4 = 1 (for plane stress) or 1 — v? (for plane strain), £ is the Young’s modulus, and v is the Poisson’s
ratio. The above equations show that, not only can the integrals be employed explicitly as the energy
fracture parameters for plane crack problems, they can also be used to evaluate the SIF’s Kj(¢) and K1 (?)
at the crack tip. However, for notch problems with generally f# > 0, the characteristic of finite values and
the physical meanings of J; are no longer valid. Also, the relationship between J;(¢) and the generalized
SIF’s is still not obvious.

To investigate the behavior of J;(¢) for a notch tip, we consider a properly chosen circular contour with
center at the tip O and of arbitrarily small radius, say, », as shown in Fig. 1. Although not explicitly shown
here, it is implied by Egs. (1)-(3) that the velocity field in the near-tip region is governed by the two
dominant terms 7*'*! (mode I) and *2*! (mode II). This indicates that the corresponding kinetic energy
density T is non-singular since it is at least of the order of O(r*'*?), with 4, > — 0.5. Therefore, the
contribution from T in Eq. (7) is relatively negligible as I" shrinks onto the notch tip O, i.e.,

I Sunlas k=12 10

a0y = tim [ [ = oG] as k=1, (10)
Substituting Eqgs. (1)-(3), together with the asymptotic displacement field, into Eq. (10) and taking inte-
gration along this path counterclockwisely, we then have

Ji(r) = lim % [ru‘“a(ﬁ)Kfﬂ(t) + = b(B)KE (1) (11)
Jal0) = iy~ 22 )R () K1) (12)

where a(f), b(f8), and ¢(f) are dimensionless functions of f§ and their variations with respect to § are shown
in Fig. 4. It is observed that, in addition to Kj4(¢) and Ky 4(¢), three extra terms (i.e., 7?11, #*2*1 and

12
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Fig. 4. The variations of a, b, and ¢ with respect to f5.
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pH1+72+1) are contained in Eqgs. (11) and (12). With the presence of the three terms, we anticipate that the
values of J;(¢) vanish as the limiting condition » — 0 by definition. Note that, when § = 0, the three terms
become unity and the solutions of J;(¢) reduce to Egs. (8) and (9).

Although the physical meanings of J;(¢) are generally not well interpreted due to their vanishing feature,
they can still be used in determination of the asymptotic stress field. To this end, by choosing a small but
finite radius R for the circular integration path I" and denoting the ‘Jiz(¢)-integrals’ as alternatives for Ji(¢),
we then rewrite Egs. (11) and (12) as

Jalt) = 2[R+ a(B)K2, (1) + R B(B)G, 1) (13)
Jalt) = ~ 22 R () (1)K 1) (14)

With the cutoff radius R, Jiz(f) turn out to be of finite values. The SIF’s and, consequently, the corres-
ponding stress field can then be determined should the integrals be properly evaluated. However, in order to
have appropriate solutions for K 4(¢) and Ky 4(¢), it is required that R be taken in the region dominated by
the asymptotic field. Singular behavior is thus always involved in the calculation. In finite element calcu-
lations, the discretized solutions will in general describe the behavior around the notch tip O more or less
accurately, depending on the degree of local grid refinement and/or the adoption of special singular ele-
ments. Therefore, direct calculation of Jig(¢) along I' with numerical solutions appears to be difficult.

In addition to the proposed Jz(¢)-integrals, the SIF’s for a notch tip can be calculated by using other
types of contour integrals. For example, the H-integral was derived with the concept of Betti’s reciprocal
theorem and presented to compute either single- or mixed-mode SIF’s in notched solids under quasi-static
loads for specific notch angles (e.g. Carpenter, 1984; Sinclair et al., 1984; Babuska and Miller, 1984;
Labossiere and Dunn, 1998, etc.). The integration is performed by using a set of particular complementary
solutions satisfying the same field equations as the displacement and stress fields. By comparing with the
H-integral, Jiz appears to be more straightforward in calculation since no extra complementary solutions
are required. With this superiority, Jiz can then be directly evaluated in the postprocessor of the finite
element code once the nodal displacements under deformation are solved.

4. Modified concept of path-independence

As described, the integration path I' for Jiz(¢) is defined as a counterclockwise circular contour with
center at the notch tip O and of small radius R. We assume the conditions when the notch edges are
traction-free and body forces are neglected. By applying divergence theorem under the state of dynamic
equilibrium, we can have the Jjz-integrals rewritten as

Ou; 0%u; Ou;
J;dg(t):/r [Wnk —aijnj<a—;lk>}ds+/c+c Why ds + Apa—;la—;’kda (15)

where p is the mass density; I, is an arbitrary outer counterclockwise contour; C; and C, are the portions of
line segments along the notch edges, which are enclosed by I', and terminated at a distance R away from the
tip O; 4 is the simply-connected domain bounded by I', and the circular contour of radius R (which is
shown as the shaded area in Fig. 1).

For the quasi-static case, the last term of Eq. (15) (i.e., the integral over domain A) vanishes. Further-
more, by considering the first component (i.e., £ = 1) under the special condition when f§ equals 0, we note
that the second term on the right hand side of Eq. (15) also vanishes. The integration then reduces to the
conventional Ji-integral for crack problems. In such case, the value of integration remains unchanged along
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any arbitrarily chosen outer contour I', and this property is the well-known path-independence. With this
property, I', is usually taken to be far from the crack tip so that the singular behavior in the near-tip region
can be neglected in the calculation. However, for the general condition when f > 0 and subjected to dy-
namic loads, extra integrals along the notch edges C; + C, and over the domain 4 must be included for both
Jir(?) and Jg(#). The idea of path-independence hence needs to be modified by including these additional
line and domain integrals.

Although the remote path I', can be chosen arbitrarily, the extra line segments C; + C, should both be
terminated in the near-tip region. Also, the domain A4 includes the near-tip region as R is chosen small
enough to be inside the zone of the dominance of the asymptotic solution. With these portions of line and
domain integrals, the asymptotic singular behavior is thus inevitably involved in the calculation. Cautious
investigation for the numerical results is therefore necessary.

5. Numerical examples

In the following two subsections, two numerical example problems are presented. In the first problem,
the Jiz(¢)-integrals are evaluated and the associated features of the numerical results are investigated. In the
second example problem, the generalized SIF’s and the corresponding stress field are evaluated. Quadratic
elements are used for displacement interpolation in the calculation. The transient analysis, neglecting
damping effect, is performed by an unconditionally stable Newmark time integration scheme. No particular
singular element is used throughout the study.

5.1. Problem 1—the Jix(t)-integrals

The aim of this problem is to illustrate the proposed computation procedure and to evaluate the char-
acteristics of the Jiz-integrals. Fig. 5(a) shows a plane strain elastic specimen containing a central wedge-
shaped defect and subjected to dynamic combined loads (o (¢), t(¢)). The combined loads (g,¢(¢), To0(t))
are given proportionally as step function of time ¢(¢) (Fig. 5(b)).

The numerical study for this test problem is organized as follows. First, the effect of the local finite ele-
ment approximation in the near-tip region is investigated. Second, calculations under a number of paths,
each encircling different portions of the same finite element mesh, are carried out in order for examination
of the property of generalized path-independence. Finally, the behavior of Jiz(¢) with respect to different
selections of R is examined. Four instances of different notch angles (with f§ equal to 0, z/4, /2, and 3n/4
respectively) are considered in the following calculations. Note that the feasibility of our formulation for
quasi-static problems has been demonstrated in the authors’ previous work (Chang and Kang, 2002).

The finite element representation shown in Fig. 6 is used to analyze the specimen (e.g., of f = 7/2). In the
discretized model, the elements are progressively refined as they approach the notch tip. In order to in-
vestigate the effect of the local finite element approximations, several meshes are constructed by successive
local h-refinements in the near-tip region, with the size of the tip-element ranging from ‘//25* to ‘1/250°.
Although not listed in detail here, the results obtained from the above different meshes show very good
convergence.

Three integration paths, each enclosing different region of the above finite element mesh, are defined in
the calculation to demonstrate the property of modified path-independence. The associated exterior con-
tours I'y’s of these paths are depicted in Fig. 7(a)—(c). As illustrated in Eq. (15), the calculation consists of
three parts, including the integrations along I',, the portion of the notch edges C; + C,, and the domain 4.
The results of each part for R =4.22 x 1072/ m and (0,,1,) = (15, -20) kPa, at # = 0.75 s are shown in
Table 1. It is observed that the integrations from C; + C, and 4 make significant contributions to the
computation and thus account for the ‘modified’ property of path-independence. However, since the
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Fig. 5. (a) A homogeneous elastic body containing a wedged-shape defect. (b) Time function of the applied load.

Fig. 6. The finite element model for the specimen in Fig. 5(a).

integrand in the last term of Eq. (15) is relatively non-singular, it is thus noted that the integration over A
becomes less significant as I', being chosen closer to the tip (e.g. path (c¢)). As a result, the solution from
different paths in general yields very similar results of J;z. Although the formulation is verified to be ana-
lytically path-independent in the modified sense, slight deviations among the results are observed because
the dynamic equilibrium state is satisfied only weakly in the finite element computation.

Next, the behavior of J;z with respect to various values of R is examined. Note that, in order to be able to
use the proposed solution scheme, it is necessary that the values of R in the finite element calculation be
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Fig. 7. Three integration paths for the Jyz-integrals.

Table 1
Path-independence for Problem 1 (Unit: 10° Pam) (mixed-mode)
frc fcl +C fA Jir fr0 fc. +C fA Jor
Path
p=0 (a) 5.498 0 —-0.654 4.844 -0.567 1.622 0.482 1.537
(b) 7.802 0 -3.028 4.774 -2.698 1.622 2.605 1.529
(c) 4.882 0 —0.040 4.842 1.433 0.107 0.002 1.542
p=mn/4 (a) 9.751 —4.215 -1.616 3.920 1.729 0.554 0.467 2.750
(b) 14.06 -4.215 -5.962 3.883 —-1.301 0.554 3.550 2.803
(©) 5.322 -1.197 —-0.220 3.905 2.907 —-0.178 0.003 2.732
p=mn/2 (a) 7.100 -4.467 -1.120 1.513 1.265 —1.358 0.968 0.875
(b) 9.674 —4.467 -3.718 1.489 -9.873 —-1.358 12.09 0.859
(c) 2.304 -0.669 -0.149 1.486 1.070 -0.428 0.230 0.872
f=3n/4 (a) 3.926 —3.382 0.054 0.598 0.395 —-1.220 0.979 0.154
(b) 5.105 -3.382 -1.136 0.587 -1.052 -1.220 2.423 0.151
(c) 0.948 —-0.531 0.172 0.589 0.353 —-0.199 0.005 0.159

Jir = fro +fC|+L"_> + [ I = fro +fcl+cz + [y
Note: w=30m, ! =15m,R/l =422 x 1072, E =2.97 MPa, v = 0.3, p = 1384 kg/m’, (6,,7,) = (15, —20) kPa, t = 0.75 s (paths (a)-
(c) are shown in Fig. 7(a)—(c) respectively).

taken small enough to be inside the zone of dominance of the asymptotic solution. By arbitrarily choosing
the solution with respect to R, = 0.2 x 1072/ m as the reference, the normalized results of Jz/Jsz, for
(00,70) = (15,—20) kPa, at = 0.75 s are depicted as functions of the scaled cutoff radius R/2/ and shown
in Fig. 8(a) and (b). The asymptotic slope of each curve extracted from the numerical fields, along with the
analytical solutions for the order of the leading terms of Ji and J>z (as addressed in Egs. (13) and (14)), are
listed in Table 2. We observe that the computed results for the slope of In(J»z) appear to be well consistent
with the values of A; + A, + 1, with the errors to remain under 2%. On the other hand, substantial devi-
ations between either 24; + 1 or 24, + 1 and the results of In(Jiz) are observed for f = n/4 and 7/2 because
the asymptotic solution of Ji is governed by the appearance of both #**'*! and #*>*! under the mixed-mode
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Fig. 8. The variations of Jiz/Jir, With respect to R/2! for (o,,7,) = (15,—-20) kPa, at t = 0.75 s.

loads. Nevertheless, the influence of #*>*! becomes less significant when f increases so that the slope of
In(Jiz) appears to be more close to the value of 24, + 1, as is evident in the case of f = 3n/4, where the
near-tip mechanical behavior is dominated by the mode I stresses.

The singular behavior of the dynamic J;; appears to be similar to that in the quasi-static condition. For
more discussions on the trend of the singularity with respect to the notch angle f8, please refer to the au-
thors’ previous work (Chang and Kang, 2002).

Since the concept of the elastodynamic Jiz(#)-integrals for notches is originally presented in this paper,
there is no analytical or numerical solution with which direct test of the above computation scheme can be
carried out (except for the case f = 0). Nevertheless, the numerical results show that the integrals are path-
independent (in a modified sense). Also, the computed values of the order of their leading terms in the
asymptotic near-tip region are well consistent with those of the analytical solutions. The feasibility of the
proposed integrals can thus be appropriately demonstrated by the observation and comparison.

5.2. Problem 2—the generalized SIF’s

As demonstrated in the previous problem, the values of Jiz(¢) for a notch tip can be properly calculated
from the finite element solutions. It is therefore possible to make use of the results of Jiz(¢) to determine the
generalized SIF’s K 4(¢) and Ky 4(¢) by using Egs. (13) and (14). Consequently, the asymptotic stress field
can then be evaluated.

In this problem, we first demonstrate the feasibility of the formulation by examining the numerical results
of Ky 4(¢) and Ky 4(¢) computed from different selections of R. Again, we consider the plane strain specimen
subjected to the combined loads (6,¢(¢), t,¢(¢)) shown in Fig. 5. The generalized SIF’s, resulting from the
corresponding solutions of Jiz, associated with various values of R for various notch angles at ¢t = 0.75 s are
listed in Table 3 Note that, for f = 0, the SIF’s (i.e., K1 and Kjo) are evaluated directly from J; and es-
sentially independent of R. The results, except those associated with Kjy 3,/4, appear to be almost invariant

Table 2
The asymptotic slopes of In(Jiz) for Problem 1 (mixed-mode)
ln(J]R) 111(J2R) 2/11 + 1 2;2 + 1 }.] + /12 + 1
p=0 0 0 0 0 0
p=mn/4 0.154 0.164 0.01 0.319 0.165
p=mn/2 0.176 0.450 0.089 0.817 0.453
f=3n/4 0.341 0.991 0.347 1.604 0.976

Note: w=30m, [ =1.5m, E =297 MPa, v= 0.3, p = 1384 kg/m?, (0,,7,) = (15,—20) kPa, t = 0.75 s.
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Table 3
The results of Kz and Ky versus R for Problem 2 (mixed-mode) (Unit:10* Pam'/?)
R/21 (1072) 0.66 1.28 2.11 3.22
=0 Kio 3.174
Kino “12.17
p=mn/4 Kin/4 5.235 5.242 5.248 5.242
Kitz/s -16.99 -17.01 -17.33 -17.19
p=mn/2 Kz 5.970 6.085 6.007 5.936
Kz —18.89 —18.39 —18.66 —18.70
f=3n/4 Ki3n/4 7.314 7.350 7.286 7.193
K1 3n/4 -10.23 -22.23 -34.81 -26.89

Note: w=30m, [ =1.5m, E=2.97 MPa, v=0.3, p = 1384 kg/m>, (6,,7,) = (15,—-20) kPa, t = 0.75 s.

with respect to different selections of R, with maximum deviation to be under 2%, as anticipated. The
exception observed for Ky 3./4 is due to its non-singular behavior. In fact, Kjy 3,4 is trivial since it makes no
contribution to the asymptotic stresses. Also, for the four instances of f considered in this problem, it is
revealed that the value of the SIF’s (again, except Kj; 3,/4) increases as the notch angle increases. As an aside,
it is suggested from our numerical results that the scale of R be within the range of 0.1/ in order for accurate
solutions of the SIF’s.

Still, to further investigate the feasibility of the computation scheme, we reconsider the same specimen
and impose the pure mode I and mode II loads separately (proportionally as step function of time ¢(¢)).
The results of the generalized SIF’s for (¢,,7,) = (15,0) kPa and (o,,7,) = (0, —20) kPa are shown in
Tables 4 and 5 respectively. The numerical results appear to be well consistent with those evaluated from
the mixed-mode solutions shown in Table 3, as expected. Note that the solution of Ky 3,/4 is not available
numerically when the specimen is subjected to pure mode II load due to the appearance of the regular
leading term %%, As aforementioned, since the asymptotic mode II stress component is relatively negli-
gible for notch angles greater than 0.577, the feature of Ky 4(¢) is therefore insignificant in such cases.

The calculated transient dynamic SIF’s for f==n/4 subjected to the step combined load
(a(2),7(¢)) = (15¢(t), —20¢(¢)) kPa are shown in Fig. 9. The results are normalized with respect to the
quasi-static SIF’s (i.e., (Kir/4), and (Kiz/4),) so that the dynamic amplifying effect can be observed. The
figure reveals that, while the maximum dynamic K ,/4(f) can be 2.4 times of (Kj./4),, the peak for Ky »/4(¢)
reaches up to 3.7 times of its static value in this case.

Table 4

The results of SIF’s versus f§ for Problem 2 (mode I)
p 0 /4 n/2 3n/4
Kip (10* Pam'/?) 3.253 5.187 6.020 7.229
Kug (10* Pam'/?) 0 0 0 0

Note: w=30m, [ = 1.5m, E =297 MPa, v = 0.3, p = 1384 kg/m®, (0,,1,) = (15,0) kPa, = 0.75 s.

Table 5

The results of SIF’s versus f§ for Problem 2 (mode II)
p 0 n/4 n/2 3n/4
Kip (10* Pam'/?) 0 0 0 0
K]I‘/g (104 Paml/z) —12.43 -17.34 —18.83 -

Note: w=30m, [ = 1.5m, E =297 MPa, v = 0.3, p = 1384 kg/m?, (0,,7,) = (0, —20) kPa, r = 0.75 s.
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Fig. 9. The calculated transient dynamic SIF’s for f = n/4 (mixed-mode).
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Fig. 10. (a)—(c) The asymptotic stress field under (o,,1,) = (15, —20) kPa at r = 2.33 x 1072/ when t = 0.75 s.

By substituting the generalized SIF’s into Eqgs. (1)—(3), the asymptotic stress field can then be appro-
priately calculated. The circumferential distribution of the stresses for different notch angles under the
combined load (a,,1,) = (15, —20) kPa at, say, » = 2.33 x 1072/, when ¢ = 0.75 s are evaluated and shown
in Fig. 10(a)—(c). The results show that the strength of stress concentration decreases essentially as the value
of f increases. Such behavior is consistent with that of the analytical solutions, where the order of sin-
gularity becomes weaker as f§ increases. It is also observed that the contribution from the mode II stress
components become less significant as f§ increases. As a matter of fact, for the case of f = 3n/4, the stresses
are observed to be almost dominated by the mode I components, as anticipated.

Although there is no analytical or numerical solution for direct verification of the above calculation
(except for the case f = 0), the validity of the formulation for the generalized SIF’s can be demonstrated by
addressing the following two points. First, the numerical results of K 4(¢) and Ky 4(¢) appear to be invariant
with respect to different selections of the cutoff radius R, as anticipated by Eqgs. (13) and (14). Also, the
computed values of the mixed-mode SIF’s are well consistent with those evaluated from the pure mode I
and mode II loads, as expected.
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6. Conclusions

A numerical procedure is provided for calculation of the elastodynamic asymptotic mixed-mode stress
field for plane elastic problems containing a stationary notch tip. To this end, we first define a pair of
contour integrals termed Jiz(¢), along with a pair of the generalized dynamic SIF’s Kjs(7) and Ky 4(). The
relationship between Jiz(#) and the SIF’s is then analytically derived and expressed in Eqs. (13) and (14).
The values of the coefficients a(f8), b(f5), and c¢(f) appear to be functions of the notch angle f only. In
principle, once the Jiz(¢)-integrals are evaluated, the generalized SIF’s and, consequently, the dynamic
asymptotic near-tip mixed-mode stress field can then be completely determined.

In order to properly characterize the near-tip behavior, it is required that the cutoff radius R be taken
small enough so the integration contour for Jiz(¢) be inside the region dominated by the asymptotic field.
Therefore, direct calculation of the Jyz(¢)-integrals with finite element solutions appears to be difficult.
Nevertheless, the integrals are shown to be path-independent in a modified sense. The integration can thus
be alternatively carried out by including three parts, i.e., an arbitrarily chosen outer contour I'y, the line
segments along the notch edges C; + C,, and the domain 4. With this property, accurate solutions can be
achieved without using any particular singular elements. The feasibility of our formulation is then demon-
strated in the numerical examples via detailed investigations of the computed asymptotic behavior. Also, it
is verified numerically that the results of Kjg(¢) and Ky g(¢) are actually insensitive to different selections of
R. In summary, the proposed numerical scheme can be used to investigate the dynamic amplifying effect in
the near-tip stress field.
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